|
|
|
|
54个诱导公式,若一个一个的去死背,是一件很痛苦的事。但如果记住并会用八个字:
“奇变偶不变,符号看象限”【有的叫“竖变横不变,符号看象限”】便可免除这一痛苦。
怎么理解这八个字?有以下要点:
❶ 诱导角:有0°,90°,180°,270°,360°五个,“奇变偶不变”就是针对这五个诱导角说的。
90°和270°是90°的1倍和3倍,因此属“奇”;0°,180°,360°是90°的0倍,2倍和4倍,因此
属“偶”。90°±α,270°±α,都要“变”;0°±α,180°±α,360°±α,都“不变”。变什么?
怎么变?变的是函数名称,方法是正余互变:正弦变余弦,余弦变正弦;正切变余切,余切变正切;正割变余割,余割变正割。【竖变横不变,则是指这些诱导角的终边所在的位置说的,90°
和270°的终边在y轴上,因此属“竖变”;0°,180°,360°的终边在x轴上,属“横不变”】
❷ 符号看象限:在使用诱导公式时,千万记住:无论诱导角后面的α有多大,都要把它看作“锐
角”,并由此决定用哪个象限的符号。如sin(90°+500°)=cos500°,诱导角是90°,因此sin变cos
把500°看作锐角,那么90°+500°就要看作是第二象限的角,在第二象限内,sin为正,故变成cos后仍取正号。再如tan(180°-425°)=-tan425°,这是因为诱导角是180°,属“偶不变”,425°
要看成锐角,那么180°-425°就是第二象限的角,在第二象象限内tan为负,故变化后前面要加负
号。
❸记住六个三角函数在四个象限里的符号。六个三角函数分为三组:①sin,csc;②cos,sec;③tan,cot;每一组内的两个函数无论在哪个象限,它们的符号总是相同的。然后按上面的顺序
记住:第一象限:+++;第二象限:+--;第三象限:--+;第四象限:-+-。
❹ 明白了上面的规矩和道理,诱导角就可任意选择。比如你举的例子:sin(17π/2-α)=cosα
这是因为17(π/2)是90°的17倍,属“奇”,sin要变cos,17π/2-α就看成90°-α属第一象限,第
一象限的sin为正,故cos前面取正号。sin(18π/2-α)=sin(9π-α)=sinα,这是因为18(π/2)是90°的偶数倍,属“不变”,因此仍是sin,符号则取sin在第二象限的符号。
❺第❹所述是要很熟练时才能用,因为容易出错,比较稳妥还是把过大的角的三角函数先用360°±α 变为小于360°的三角函数,然后再用诱导公式变为锐角三角函数较好。如你的例子:
sin(17π/2-α)=sin(8π+π/2-α)=sin(π/2-α)=cosα;
sin(18π/2-α)=sin(9π-α)=sin(8π+π-α)=sin(π-α)=sinα.
这里的诱导角都是8π,是2π的4倍,函数名称不变,符号都取第一象限的符号,因为π/2-α和
π-α都要看成锐角。
|